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The unbinding properties of an interface near structured wedges are investigated by discrete models with
short range interactions. The calculations demonstrate that interface unbinding takes place in two stages:sid a
continuous fillinglike transition in the pure wedgelike parts of the structure, andsii d a conclusive discontinuous
unbinding. In 2D an exact transfer matrix approach allows us to extract the whole interface phase diagram and
the precise mechanism at the basis of the phenomenon. The Metropolis Monte Carlo simulations performed in
3D reveal an analogous behavior. The emerging scenario allows us to shed new light onto the problem of
wetting of geometrically rough walls.
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I. INTRODUCTION

Wetting phenomena concerns the properties of the liquid
film which forms when an undersaturated vaporsfluidd is put
in contact with a solid inert substrate. The critical properties
of the liquid-vapor interface are, generally, determined by the
nature and range of the intervening interactions. In this re-
spect, e.g., for a planar substrate, different interactions po-
tentials determine the applicability of partial or complete
wetting regimes as well as the nature of the wetting transi-
tion sfor a review on these phenomena, seef1,2gd.

However, substrate surface geometry can strongly influ-
ence these properties. For example, in the complete wetting
regime, adsorption isotherms of random rough substrates
f3,4g and linearly sculpted substratesf5–7g exhibit unusual
exponents which are determined by the surface geometry. On
the other hand, while for planar geometry partial wetting
prevents the growth of macroscopic films, in the same con-
ditions, in pure wedges, we can have continuous filling phe-
nomena by which the film thickness is driven to infinity
f5,8g. Finally, and this is particularly relevant for wetting
critical properties, there are many indications that increasing
surface roughness can change the order of the wetting tran-
sition to first orderf9–12g.

In this paper we report the results of an accurate investi-
gation about the unbinding properties of a thermally fluctu-
ating interface in wedge-modified systemsssee Fig. 1d,
which we denotedstructured wedgessSWsd. The choice of
such a system structure is motivated by the fact that they
incorporate contrasting geometrical motivesslike wedges
and ridgesd, which are typical of the geometry of rough sur-
faces. In this respect, while the separate effects of these ge-
ometries on wetting phenomena are already rather well
known f8,13g, the effects of their combination were never
approached in detail before. Here, we consider the study of
both 2D fFig. 1sadg and 3DfFig. 1sbdg SWs, and our results
show that such structures imply two-stage interface unbind-
ing transition, one of which is discontinuous. Our analysis of
the phenomenon allows us to understand its intimate connec-
tion with the surface geometry as well as to make some
extension to the wetting properties of rough boundaries.

II. THE MODEL

In the framework of the solid on solidsSOSd approach our
model liquid-vapor interface corresponds to a lattice random
walk sin 2Dd or to a random surfacesin 3Dd in the vicinity of
a fixed substrate boundary. IfHX denotes the substrate
boundarysintegerd height at the positionX fdepending on 2D
or 3D space dimension,X denotes a single variablex or a
couple of variablesx,yd, respectivelyg, the interface configu-
rations can be specified in terms of the local relativesintegerd
height variableszX ssee Fig. 2d. The discrete nature of the
model implies that nonhorizontal wallsssee the magnifying
glass in Fig. 1d are shaped as staircases with slopes not ex-
ceeding unity. Consequently, the height functionHX satisfies
the conditionsHx+1−Hx=0, ±1 and Hx+1,y−Hx,y=0, ±1 in
2D and 3D, respectively. In 3D, because of the translation
invariance along they axis, one has alsoHx,y+1−Hx,y=0.

At coexistencesno chemical potential differences with re-
spect to its critical bulk valued, an interfacefsee Figs. 2sad

FIG. 1. Sketch of the 2Dfpanel sadg and 3D fpanel sbdg SW
geometries studied in this paper. Themagnifying glassshows the
staircase nature of the tilted smooth wallsswith slope u1/nud by
which the SW are constructed.
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and 2sbdg can be studied in terms of a Hamiltonian of the
form

H = o
kX,X8l

Es1 + uhX − hX8u
gd − Uo

X

dzX,0, s1d

where the first sum is done over all pairs of nearest neighbor
columns. In the above expressionE and −U swith E ,U.0d
are the energy cost of any interface stepsor plaquette in 3Dd
and the energy gain of each interface contactsof horizontal
step or plaquetted with the substrate, respectively;g=1 or `
determines the SOS or restricted SOSsRSOSd character of
the implemented walk model, respectively. To limit the com-
putational complexity, in 3D we consider only RSOS inter-
faces.

III. 2D STRUCTURED WEDGES

In 2D, an interface in the vicinity of a boundaryswith a
generic shaped can be fully treated by a transfer matrix ap-

proach based on the matricesR̂x and L̂x defined as follows:

fR̂xgz,z8 = vuz8 − z + Hx+1 − Hxugkdz8,0, s2ad

fL̂xgz,z8 = vuz8 − z + Hx−1 − Hxugkdz8,0. s2bd

Here v=e−E/kBT=e−1/t st=kBT/Ed and k=eU/kBT=eu/t su
=U /Ed correspond to step and wall fugacities and, by defini-
tion, vfRxgz,z8 andvfLxgz,z8 are the Boltzmann weights of the
elementary walks fromsx,Hx+zd to sx+1,Hx+1+z8d or sx
−1,Hx−1+z8d, respectively. Thus, the partition function of,
e.g., the walks betweensx1,Hx1

d andsx2,Hx2
d fsee Fig. 2sadg,

is given by

Zx1,x2
= vx2−x1fR̂x1→x2

g0,0 ; vx2−x1fL̂x1←x2
g0,0, s3d

with R̂x→x8;pi=x
x8−1R̂i and L̂x←x8;pi=x8

x+1 L̂ i.

But the transfer matrix approach allows also the direct
calculation of the distance probability distribution function
sPDFd at any position along the boundary. A walk like the
one in Fig. 2sad can be divided in two parts, e.g., atx0,

obtaining two walks with Boltzmann weightsfR̂x1→x0
g0,z and

fL̂x0←x2
g0,z, respectively. Thus, the walk distance PDF atx0 is

proportional to the productfR̂x1→x0
g0,z·fL̂x0←x2

g0,z. On the
other hand,storing the initial walk distance distributions, at
x1 andx2, in the vectorsrx1

and lx2
fin the case of Fig. 2sad

we should setfrx1
gz=flx2

gz=dz,0g, the following iterations

rx+1 = rxR̂x; lx−1 = lxL̂x, s4d

allow us to get the quantitiesfR̂x1→x0
g0,z and fL̂x0←x2

g0,z in
terms of the components ofrx0

and lx0
vectors. Indeed, itera-

tionss4d transfer toward right and left the local walk distance
distributions to any position along the boundary, like in a
forward diffusion process. Therefore, in the limit of an in-
definite walk sour interface modeld, i.e., ux0−x1,2u→`, the
transferred right and left PDFs, defined as

Px0

sRdszd =
1

frx0
g
frx0

gz, Px0

sLdszd =
1

flx0
g
flx0

gz, s5d

will reach steady profiles depending only on the specific
boundary conformation. In these conditions the interface
PDF at any positionx0 will be given by

Px0
szd = Px0

sRdszdPx0

sLdszd, s6d

and the quantity

Dfx0
= − ln Px0

szd = − fln Px0

sRdszd + ln Px0

sLdszdg s7d

can be seen as the corresponding local excess interface free
energy profile.

Our SW boundaries contain only unit vertical steps. Thus,
the transfer matricess2d can be of only three different forms,
i.e., those corresponding to a down step, an up step and no

vertical step; we denote these matrices asD̂, Û, and F̂, re-
spectively. For tilted wall regions with slopeu1/nu, the cal-
culation of right and left PDFs can be done by implementing

iterationss4d in terms ofF̂n−1D̂ or F̂n−1Û matricessdepend-
ing on the descending or ascending character of the walld; for
large system sizes, the correspondingPsRd and PsLd will as-
ymptotically become eigenvectors of these matrices. In par-
ticular, in binding conditionssi.e., at high enoughu valuesd,
the interface PDFs atx= ±w and x=0 fsee Fig. 1sadg will
correspond toFn

2 and Cn
2, Fn and Cn being the bound

eigenvectors of matricesF̂n−1D̂ and F̂n−1Û, respectively. In
this respect, an accurate investigation allows the determina-
tion of these statessexact forn=1,2, numerical forn.2d
both for SOS as well as RSOS walk models.

A brief analysis ofn=1 casestilted walls with unit sloped
is particularly useful for the understanding of the general

scenario. MatricesF̂n−1D̂ andF̂n−1Û reduce toD̂ andÛ and
for SOS walks bothF1 andC1 components scale asmD1

z and
mU1

z , respectively.mD1
=s1+kv2d /kv, and thus the local char-

acter of F1 si.e., mD1
,1d is achieved untilk.kD1,c, with

FIG. 2. sad Example of a configuration of a directed walksheavy
continuous lined with the ends anchored to a 2D boundaryslight
continuous line delimiting the shaded aread. sbd An RSOS interface-
surface configuration near our 3D SW.
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kD1,c=1/vs1−vd. The corresponding interface PDF at the
SW bottomssi.e., x= ±wd is P±wszd=mD1

2z and the resulting
interface average distance,kzl±w=ozz·P±wszd /ozP±wszd is
given by

kzl±w =
k

s2 − k + kv2ds1 + 2kv2 + k2v4 − k2v2d
. s8d

As k→kD1,c
+ , kzl±w diverges with continuity asfk−kD1,cg−1

and thuskD1,c is the critical fugacity associated to the con-
tinuous interface unbinding from SW bottoms. This transi-
tion is the analog of the critical filling transition in pure
wedge geometryf5,14g. We have verified that forn
=2,3, . . . ,10 oneobserve the same behaviorsalso for RSOS
walk modeld and in Fig. 3 we show the corresponding phase-
line boundaries, consisting in the plot of the quantityucstd
= t ln kDn,c. The picture demonstrates that in the wedge geom-
etry, in contrast to the case of flat substratesssee the bottom
curves in Fig. 3d, a bound interface alwayssalso at lowtd
requires a finite attraction energyu. On the other hand, the
local minima in the phase-line boundaries confirm the possi-
bility of reentrance phenomena which were already predicted
f10g for rough self-affine boundaries. More details about
these aspects will be reported elsewheref15g.

On the contrary,mU1
=kv / sk−1d and therefore the local

character ofC1 is achieved fork.kU1,c with kU1,c=1/s1
−vd,kD1,c. Thus, whenk approacheskD1,c from above, and
the interface unbinds from SW bottoms, it remains tightly
bound to the central ridge. To be more precise, in the limit
k→ fkD1,cg+ the mean interface distance from the SW central
ridge is finite and is given by

kzl0 =
v4s1 − v + v2d

s1 + v + v2ds1 + v2ds1 − vd2 . s9d

Finally, for k,kD1,c we are out of binding conditions for

D̂ matrix and the lateral descending walls of the SW are no
more able to bind the walks: iterationss4d asymptotically
produce delocalized right and left PDFs. In these conditions,
the presence of the central ridge can have only very marginal
effects svanishing with the size of the structured and, thus,
the interface unbinds from the SW. The conclusion is:kD1,c

is also the threshold of a discontinuous unbinding transition!
The curves in Fig. 3 can be seen also as the interface phase-
lines for 2D SW first-order unbinding.

The conclusive validation of the above, surprising, con-
clusion is obtained by the analysis of the free energy profiles.
In Fig. 4 we show a plot ofDf±wszd fpanelsadg and Df0szd
fpanelsbdg profiles obtained at fixedt for an RSOS interface
in a finite size SW with wall slope 1/2ssee the specific SW
dimensions in the figure legendd characterized by an unbind-
ing critical fugacity kD2,c=2.607 536. . .sexact calculationd.
Curves in panelsad show, ask decreases, the following free
energy profile evolution:sid a unique free energy minimum at
z=0 sfor k=2.6100.kD2,cd which delocalizes into a wide

one atk=2.6075.kD2,c
sRSOSd si.e., the continuous transition in

the pure wedgesd; sii d double minima profiles fork=2.6050,
2.6025&kD2,c with the minima placed atz=d1−d andz=d1

si.e., coexistence between the state localized at the SW cen-
tral ridge height and the bulk unbound stated; andsiii d domi-
nance of the bulk unbound statesk=2.6000,kD2,cd. An
analogous evolution is extracted by the free energy profiles
of Df0 in panel sbd. Therefore, in passing betweensii d and

FIG. 3. SOSscontinuous linesd and RSOSsdashed linesd inter-
face phase-line boundaries in theu-t plane for 2D SWsflike in Fig.
1sadg with tilted wall slope u1/nu sn=1,2, . . . ,10d. Upper curves
sn=1,2d are the result of exact calculations; the other curves were
obtained by a numerical implementation of iterationss4d. Lower
slightd curves are the interface phase-line boundary for a flat wall
f16g.

FIG. 4. Excess free energy profilessin arbitrary unitsd at x
= ±w fpanelsadg andx=0 fpanelsbdg for a 2D SW with wall slope
u1/2u, d=1000, andd1=2000 fsee Fig. 1sadg. The free energy pro-
files have been obtained by a numerical implementation of itera-
tions s4d at v=0.2 st=0.6213. . .d. The curves are shifted vertically
to increase the picture clearness; in panelsbd also a little horizontal
shift has been adopted to avoid curves superposition atz=0.
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siii d we have a discontinuous transition! Finally, the picture
clarifies that the discontinuous nature of such a transition is
strictly related to the fact that, for diverging system size, the
d parameter maintains larger than the widths of the two free
energy minimasscaling as,W1/2d.

IV. 3D STRUCTURED WEDGES

The transfer matrix approach is not applicable to the wet-
ting problem in 3D. In this case we have considered Me-
tropolis Monte Carlo simulations of an RSOS fluctuating in-
terface fsee Fig. 2sbdg in a 3D SW geometry like the one
sketched in Fig. 1sbd. Because of the rapid increase of com-
putation times with system size, we have considered rela-
tively small systems: the simulations were done for a squared
system with sizeL=50,100,150sin they axis directiond and
W=L /2 sL and W are in lattice unitsd and using periodical
boundary conditions along bothx andy axes. The SWs con-
sidered in the simulations were usually constructed bysstair-
cased tilted walls with slope 1 or 1/2 andd1/d.2 fsee Fig.
1sbdg. As usual, the implemented Metropolis Monte Carlo
algorithm was based on local moves corresponding to the
attempt of changingsat randomd the local surface height by
one unitsi.e., zx,y→zx,y±1d. After equilibration, the calcula-
tion of equilibrium average parameters has been performed
on the basis of very long simulations of up to 105–106 MCS
s1 MCS;L2 Monte Carlo movesd.

In Fig. 5, as a representative of the general behavior, we

show theu dependence of the interface averages distances
from SW bottomsfkzl±w, panel sadg and SW central ridge
fkzl0, panelsbdg obtained a constantt for a given 3D SWssee
geometrical specifications in figure legendd. The behavior of
these two quantities follows a scheme very similar to the one
outlined for 2D SW interface unbinding:sid a continuous
fillinglike transition of the two component wedges atu
.1.607fnote also in the right inset in panelsad the roughly
flat height distributiong; and sii d a discontinuous detachment
from the SW central ridge atu.1.309fsee the double peak
structure of the interface height distributions in the left insets
in panel sad and sbdg. However, at least for the finite size
system considered here, continuous and discontinuous un-
binding seem to be separated by a finiteu gap. Most prob-
ably this is due to the linear extension of the system along
they axis which corresponds to the main difference between
the present 3D SW geometry and the 2D one. With an ex-
tensive simulations program, we planned to evaluate the
whole interface phase-lines for 3D wedges with the intent to
clarify also this aspect.

V. CONCLUSIONS

Our investigation demonstrates that interface unbinding in
SWs takes place in two stages: the first one corresponds to
the continuous filling transition of the two component
wedges, and in the second stage the interface jumps, discon-
tinuously, from a state localized at the SW central ridge and
the bulk unbound state. We stress the fact that in SWs the
bulk unbound state come into field, rather than in some arti-
ficial way f17g, just because of thecorrugatedgeometry of
the substrate. The first-order nature of the final unbinding
transition is due to thecompetitionbetween binding at the
central ridge and whole SW filling. In other words, it is the
spatial combination of wedges and ridges of SWs to create
the conditions for a discontinuous interface unbinding. As
seen in Sec. III, a single ridge is only able to strongly pin the
interface, retardingswith respect to a wedged its unbinding
from the apexsfor more details see also Ref.f15gd. In a
complete wetting regime, as shown in Ref.f13g, interface
unbinding near the apex mimics planar critical wetting.

Generalization of our conclusions to more complex SWs
and/or to random rough surfaces should take into account,
carefully, the type and the scaling properties of the corruga-
tion introduced by the specific boundary. On the other hand,
our analysis about interface unbinding in 2D SWs gives
some more efforts on the key role of surface roughening
exponentzS in determining the nature of the wetting transi-
tion in self-affine rough substrates. In the light of the present
results, we have started new investigations of 2D and 3D
rough geometries, with the purpose to get conclusive insights
in this issues.
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FIG. 5. Average interface distancessopen dotsd from 3D SW
bottomsfpanelsadg and central ridgefpanelsbdg and the correspond-
ing distributionssgray shaded aread. The data come from Metropo-
lis Monte Carlo simulations at constantt=2.0 and system sizesL
=100,W=50, wall unit slope, andd1/d=2 si.e.,d=16d. In the insets
is the detail of interface distance distributions at theu values
marked by the dashed lines.
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