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Interface unbinding in structured wedges
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The unbinding properties of an interface near structured wedges are investigated by discrete models with
short range interactions. The calculations demonstrate that interface unbinding takes place in twéi stages:
continuous fillinglike transition in the pure wedgelike parts of the structure(igna conclusive discontinuous
unbinding. In 2D an exact transfer matrix approach allows us to extract the whole interface phase diagram and
the precise mechanism at the basis of the phenomenon. The Metropolis Monte Carlo simulations performed in
3D reveal an analogous behavior. The emerging scenario allows us to shed new light onto the problem of
wetting of geometrically rough walls.
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I. INTRODUCTION Il. THE MODEL

Wetting phenomena concerns the properties of the liquid In the framework of the solid on soliOS approach our
film which forms when an undersaturated vafftuid) is put ~ model liquid-vapor interface corresponds to a lattice random
in contact with a solid inert substrate. The critical propertieswalk (in 2D) or to a random surfacgn 3D) in the vicinity of
of the liquid-vapor interface are, generally, determined by thea fixed substrate boundary. Ky denotes the substrate
nature and range of the intervening interactions. In this reboundary(intege) height at the positioiX [depending on 2D
spect, e.g., for a planar substrate, different interactions poer 3D space dimensiorX denotes a single variabbe or a
tentials determine the applicability of partial or complete couple of variablegx,y), respectively, the interface configu-
wetting regimes as well as the nature of the wetting transirations can be specified in terms of the local relatinéege)
tion (for a review on these phenomena, $&g)). height variableszy (see Fig. 2 The discrete nature of the

However, substrate surface geometry can strongly influmodel implies that nonhorizontal wallsee the magnifying
ence these properties. For example, in the complete wettinglass in Fig. 1 are shaped as staircases with slopes not ex-
regime, adsorption isotherms of random rough substrateseeding unity. Consequently, the height functldp satisfies
[3,4] and linearly sculpted substratfs-7] exhibit unusual the conditionsH,,;-H,=0,+1 andH,,;,—H,,=0,%1 in
exponents which are determined by the surface geometry. 02D and 3D, respectively. In 3D, because of the translation
the other hand, while for planar geometry partial wettinginvariance along thg axis, one has alsbl, ., —H,,=0.
prevents the growth of macroscopic films, in the same con- At coexistencéno chemical potential differences with re-
ditions, in pure wedges, we can have continuous filling phespect to its critical bulk value an interface see Figs. &)
nomena by which the film thickness is driven to infinity
[5,8]. Finally, and this is particularly relevant for wetting
critical properties, there are many indications that increasing
surface roughness can change the order of the wetting trar
sition to first ordef9-12.

In this paper we report the results of an accurate investi-,
gation about the unbinding properties of a thermally fluctu-
ating interface in wedge-modified systenisee Fig. 1,
which we denotedstructured wedge$SWs. The choice of
such a system structure is motivated by the fact that they
incorporate contrasting geometrical motivdike wedges
and ridgeg which are typical of the geometry of rough sur-
faces. In this respect, while the separate effects of these ge d
ometries on wetting phenomena are already rather well d,
known [8,13], the effects of their combination were never 2
approached in detail before. Here, we consider the study o (b)
both 2D[Fig. 1(a)] and 3D[Fig. 1(b)] SWSs, and our results W w0 W
show that such structures imply two-stage interface unbind-
ing transition, one of which is discontinuous. Our analysis of FIG. 1. Sketch of the 2[panel ()] and 3D [panel (b)] SW
the phenomenon allows us to understand its intimate connegeometries studied in this paper. Thegnifying glasshows the
tion with the surface geometry as well as to make sometaircase nature of the tilted smooth wallsith slope|1/n|) by
extension to the wetting properties of rough boundaries.  which the SW are constructed.
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(a) But the transfer matrix approach allows also the direct
calculation of the distance probability distribution function
(PDP at any position along the boundary. A walk like the
one in Fig. Za) can be divided in two parts, e.g., &,
obtaining two walks with Boltzmann weighf&,, .x lo, and
[I:xoexz]O,Zi respectively. Thus, the walk distance PDFgis

proportional to the prOdUCEIA?leXO]O,z'[I:XOHXZ]O,z- On the
other handstoring the initial walk distance distributions, at
X; andxy, in the vectors, andl, [in the case of Fig. @)
we should sefr, ],=[lx 1,= 3,0, the following iterations

M+1= erx; |x—1: Ixl-x: (4)

allow us to get the quantitielR, . lo, and[Ly . x,loz i
terms of the components o;to andIXO vectors. Indeed, itera-
tions(4) transfer toward right and left the local walk distance
distributions to any position along the boundary, like in a
forward diffusion process. Therefore, in the limit of an in-
definite walk (our interface modg] i.e., [Xg=X; o —°, the
transferred right and left PDFs, defined as

FIG. 2. (a) Example of a configuration of a directed wdheavy
continuous ling with the ends anchored to a 2D boundalight
continuous line delimiting the shaded arg®d) An RSOS interface-

surface configuration near our 3D SW.
’ PI@= e PUO= O O
and 2b)] can be studied in terms of a Hamiltonian of the 0 0
form will reach steady profiles depending only on the specific
boundary conformation. In these conditions the interface
H= 2 EQ+|h=hy|)-UD 7,00 (1)  PDF at any position, will be given by
xx) X b (7 = pR(7pL
(2 =PR@PL @), (6)

where the first sum is done over all pairs of nearest neighbor

columns. In the above expressiénand -/ (with £,1/>0) and the quantity
are the energy cost of any interface stepplaquette in 3 _ _ R o)

and the energy gain of each interface contafthorizontal Afxo_ In PXO(Z) ==l I:)Xo (2)+1n F)Xo (2)] )

step or plaquetjewith the substrate, respectively=1 or=  can pe seen as the corresponding local excess interface free
determines the SOS or restricted S80S character of energy profile.

the implemented walk model, respectively. To limit the com-  oyr SW boundaries contain only unit vertical steps. Thus,
putational complexity, in 3D we consider only RSOS inter-he transfer matrice) can be of only three different forms,
faces. i.e., those corresponding to a down step, an up step and no

IIl. 2D STRUCTURED WEDGES vertical step; we denote these matricesDadJ, andF, re-
spectively. For tilted wall regions with slogé/n|, the cal-
culation of right and left PDFs can be done by implementing
iterations(4) in terms of F"'D or F"U matrices(depend-
ing on the descending or ascending character of the viatl
[|§2 1= W? ~ 7+ H1 = Wk 0 (2a) large system sizes, the correspondPi§ and P will as-
xzz ' ymptotically become eigenvectors of these matrices. In par-
~ ticular, in binding conditiongi.e., at high enouglu values,
[Lydpz = @ =2 M= M’k 0, (2b)  the interface PDZFS A and x=0 [see Fig. 1a)] will
Here w=ethT=e M (t=kgT/&) and k=eUkeT=edt (y correspond to®; and ¥;, ®, and ¥, being the bound

; i ~alE N1 ~n-11 ;
=UI &) correspond to step and wall fugacities and, by deﬁni_elgenvectors of matrices . D and F. U, respectively. In .
tion, w[R ], , andw[L,],, are the Boltzmann weights of the th|s respect, an accurate investigation alloyvs the determina-
| ’ tX 2z ks f x1z.z Ho+7) t 1 Horty tion of these stategexact forn=1,2, numerical forn>2)
elementary walks ro_n(x, xt2) 10 (x+1, Xl z) or (X both for SOS as well as RSOS walk models.
-1,H,_1+Z'), respectively. Thus, the partition function of,

) A brief analysis ofn=1 case(tilted walls with unit slopé
e.g., the walks betweefx,, H, ) and(x;,Hy)) [see Fig. 2], is particularly useful for the understanding of the general

In 2D, an interface in the vicinity of a boundatwith a
generic shapecan be fully treated by a transfer matrix ap-

proach based on the matricé§ and I:X defined as follows:

is given by scenario. Matrice§" 1D andF™ U reduce toD andU and
2y, = wxz_xl[Rxlﬂxz]o,o — wxz_xl[Lxlkxz]o,o, 3) fozr SOS WaII.<s bottb, and\Ifé components scale E;w,z)l and

A o A A MG, respectlvely,uDlz(l +kw?)/kw, and thus the local char-
with R =TSRy and Ly =1L acter of®; (i.e., up <1) is achieved untilk>kp_ c, with
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FIG. 3. SOS(continuous linesand RSOSdashed linesinter- FIG. 4. Excess free energy profilds arbitrary unitg at x
face phase-line boundaries in the plane for 2D SW#like in Fig. =xw [panel(a)] andx=0 [panel(b)] for a 2D SW with wall slope

1(a)] with tilted wall slope|1/n| (n=1,2,...,10. Upper curves |1/2], d=1000, andd;=2000[see Fig. 18)]. The free energy pro-
(n=1,2) are the result of exact calculations; the other curves werdiles have been obtained by a numerical implementation of itera-
obtained by a numerical implementation of iteratiqd$. Lower tions (4) at w=0.2 (t=0.6213..). The curves are shifted vertically
(light) curves are the interface phase-line boundary for a flat walko increase the picture clearness; in paiglalso a little horizontal

[16]. shift has been adopted to avoid curves superpositiaF @t
401 _ 2
kp,c=1/w(l-w). The corresponding interface PDF at the (2)o= W(l-wto) _ 9)
r : _ : _ 2 ; 1+w+ o)l +0?)(l-w)?
SW bottoms(i.e., x=+w) is PiW(z)—,uDl and the resulting
interface average distanc€z),,,=2,z-P.(2)/2,P.+(2) is Finally, for k< le,c we are out of binding conditions for
given by D matrix and the lateral descending walls of the SW are no
K more able to bind the walks: iteratiorid) asymptotically
(D= (8) produce delocalized right and left PDFs. In these conditions,

- 2 2 12, 12, 2)"
(2 —k+ka)(1+ XKo"+ K'e” - Ko the presence of the central ridge can have only very marginal
As k—K ., (2., diverges with continuity a$k—kD1 Jt  effects(vanishing with the size of the structyrand, thus,

1 = ’ . . . s,
and thuskp_. is the critical fugacity associated to the con- the interface unbinds from the SW. The conclusionkis; .
tinuous interface unbinding from SW bottoms. This transi-IS als0 the threshold of a discontinuous unbinding transition!
tion is the analog of the critical filling transition in pure TN Curves in Fig. 3 can be seen also as the interface phase-
wedge geometry[5,14. We have verified that forn lines for 2D SW first-order unbinding.

=2,3,...,10 onebserve the same behavi@so for RSOS The conclusive validation of the above, surprising, con-
walk mode} and in Fig. 3 we show the corresponding IOhase_clusi_on is obtained by the analysis of the free energy profiles.
line boundaries, consisting in the plot of the quantityt) !N Fig. 4 we show a plot of\f,,(2) [panel(a)] and Afy(z)

=t In kp_.. The picture demonstrates that in the wedge gec,m[panel(b)] profiles obtained at fixetifor an RSOS interface

etry, in contrast to the case of flat substrate=e the bottom in_ a fini_te siz_e SW With wall slope 1/ &e_e the specific .SW
curves in Fig. 3 a bound interface alway&lso at lowt) dimensions in the figure legendharacterized by an unbind-

requires a finite attraction energy On the other hand, the N9 critical fugacity kp, =2.607 536...(exact calculation
local minima in the phase-line boundaries confirm the possiCUrves in panefa show, ask decreases, the following free
bility of reentrance phenomena which were already predicte§neragy profile evolution(i) a unique free energy minimum at
[10] for rough self-affine boundaries. More details aboutz=0 (for k=2.6100>kp, ¢) which delocalizes into a wide
these aspects will be reported elsewherg. one atk=2.6075= k(DF;SCOs (i.e., the continuous transition in
On the contraryuy, =ke/(k-1) and therefore the local the pure wedgés(ii) double minima profiles fok=2.6050,
character ofW, is achieved fork>ky o with ky =1/(1  2.6025<kp, . with the minima placed at=d,-d andz=d,
—w) <kp, ¢. Thus, wherk approache&y_ . from above, and (i.e., coexistence between the state localized at the SW cen-
the interface unbinds from SW bottoms, it remains tightlytral ridge height and the bulk unbound satend (iii ) domi-
bound to the central ridge. To be more precise, in the limimance of the bulk unbound staté&=2.6000<kp,c). An
k—[kp, c]" the mean interface distance from the SW centralanalogous evolution is extracted by the free energy profiles
ridge is finite and is given by of Afy in panel(b). Therefore, in passing betweein) and
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show theu dependence of the interface averages distances
- from SW bottoms[(z),,,, panel(a)] and SW central ridge
[(2)o, panel(b)] obtained a constantfor a given 3D SWsee
geometrical specifications in figure leggndihe behavior of

10 20 30,40 .. .
2014 i : . these two quantities follows a scheme very similar to the one
A :\j i outlined for 2D SW interface unbindindi) a continuous

g__

30

e 2

@,

4 fillinglike transition of the two component wedges at
101 % 1 =1.607[note also in the right inset in pang) the roughly
flat height distributiory and (ii) a discontinuous detachment
b from the SW central ridge at=1.309[see the double peak

2% : : : : — structure of the interface height distributions in the left insets
; . in panel(a) and (b)]. However, at least for the finite size
(b i system considered here, continuous and discontinuous un-
~<10ks _ binding seem to be separated by a finitgap. Most prob-
> 5/0 7030730530 1 ably this is due to the linear extension of the system along
[ 7] they axis which corresponds to the main difference between
] N N the present 3D SW geometry and the 2D one. With an ex-
13 L& 15 1.6 1.7 tensive simulations program, we planned to evaluate the

whole interface phase-lines for 3D wedges with the intent to

FIG. 5. Average interface distancéspen dots from 3D SW  clarify also this aspect.
bottoms/panel(a)] and central ridgépanel(b)] and the correspond-

ing distributions(gray shaded arg¢aThe data come from Metropo- V. CONCLUSIONS

lis Monte Carlo simulations at constant2.0 and system sizds . . . .
=100,W=50, wall unit slope, and;/d=2 (i.e.,d=16). In the insets Our investigation demonstrates that interface unbinding in
is the detail of interface distance distributions at thevalues ~SWS takes place in two stages: the first one corresponds to
marked by the dashed lines. the continuous filling transition of the two component

wedges, and in the second stage the interface jumps, discon-
tinuously, from a state localized at the SW central ridge and
clarifies that the discontinuous nature of such a transition i he bulk unbound state. We stress the fact that in SWs the

strictly related to the fact that, for diverging system size, the.U|k unbound state come into field, rather than in some arti-

L . icial way [17], just because of theorrugatedgeometry of
gnpearg/mrg;[r?irmr&icr:];?:; ;asfs\;l}?)a” the widths of the two freF{he substrate. The first-order nature of the final unbinding

transition is due to theompetitionbetween binding at the
central ridge and whole SW filling. In other words, it is the
IV. 3D STRUCTURED WEDGES spatial combination of wedges and ridges of SWs to create
. . . the conditions for a discontinuous interface unbinding. As
The transfer matrix approach is not applicable to the wet- . . . . .
. . . . seen in Sec. lll, a single ridge is only able to strongly pin the
ting problem in 3D. In this case we have considered Me- f di ith dae bindi
tropolis Monte Carlo simulations of an RSOS fluctuating in_:cnter aﬁe, retar fmgwn r?peﬁt oa wle gegs ug |n| N9
terface[see Fig. 20)] in a 3D SW geometry like the one rom the apex(for more details see also Refl5)). In a

sketched in Fig. (b). Because of the rapid increase of Com_compIe:te wetting regime, qs.shown In R.ET‘L'?’]' mterface
unbinding near the apex mimics planar critical wetting.

putation times with system size, we have considered rela- o .
. ) . ; Generalization of our conclusions to more complex SWs
tively small systems: the simulations were done for a squared

) ) o and/or to random rough surfaces should take into account
system with sizé.=50, 100, 150in they axis direction and ; . ;
W=L/2 (L andW are in lattice units and using periodical carefully, the type and the scaling properties of the corruga

boundary conditions along bothandy axes. The SWs con- tion introduced by the specific boundary. On the other hand,

) ; . . . our analysis about interface unbinding in 2D SWs gives
sidered in the simulations were usually constructeddbgir- some more efforts on the kev role of surface roughenin
cas@ tilted walls with slope 1 or 1/2 and;/d=2 [see Fig. y 9 9

. . exponent/s in determining the nature of the wetting transi-
1(b)]'. As usual, the implemented Metropolis Mon.te Carlotion in self-affine rough substrates. In the light of the present
algorithm was based on local moves corresponding to th

. . ?esults, we have started new investigations of 2D and 3D
attempt of changindgat random the local surface height by . : o
o S rough geometries, with the purpose to get conclusive insights
one unit(i.e., z,,— z,,*1). After equilibration, the calcula-

tion of equilibrium average parameters has been performe'cﬁ1 this issues.

on the basis of very long simulations of up tc®2A® MCS
(1 MCS=L? Monte Carlo moves
In Fig. 5, as a representative of the general behavior, we The work has been partly supported by INFM.

(iii) we have a discontinuous transition! Finally, the picture
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